
A Fast-but-Gentle Introduction to 
Artificial Intelligence Acceleration

Dr. Francesco Conti, DEI & ARCES
f.conti@unibo.it



2

Deep NN Timeline

• 1940s: Neural networks were proposed

• 1960s: Deep neural networks were proposed

• 1989: Neural network for recognizing digits (LeNet)

• 1990s: Hardware for shallow neural nets

– Example: Intel ETANN (1992)

• 2011: Breakthrough DNN-based speech recognition

– Microsoft real-time speech translation

• 2012: DNNs for vision supplanting traditional ML

– AlexNet for image classification

• 2014+: Rise of DNN accelerator research

– Examples: Neuflow, DianNao, etc.

NVIDIA GPUs with CUDA available

[Yann LeCun, ISSCC 2019]



Y. LeCun

Deep ConvNets (depth inflation)

VGG
[Simonyan 2013]

GoogLeNet
Szegedy 2014]

ResNet
[He et al. 2015]

DenseNet
[Huang et al 2017]



Searching for ”AI” on Google Image Search

[CC images, various sources]

https://www.google.com/url?sa=i&url=https%3A%2F%2Fcommons.wikimedia.org%2Fwiki%2FFile%3AArtificial_Intelligence%2C_AI.jpg&psig=AOvVaw3AVdXAHC5CAat_UBdoBCwS&ust=1610490087339000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOiX3qj1lO4CFQAAAAAdAAAAABAD


Searching for ”AI” on Google Image Search

Ok, not much information here!

[CC images, various sources]

https://www.google.com/url?sa=i&url=https%3A%2F%2Fcommons.wikimedia.org%2Fwiki%2FFile%3AArtificial_Intelligence%2C_AI.jpg&psig=AOvVaw3AVdXAHC5CAat_UBdoBCwS&ust=1610490087339000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOiX3qj1lO4CFQAAAAAdAAAAABAD


Searching for ”Deep Neural Network” on Google Image Search

[CC images, various sources]



Searching for ”Deep Neural Network” on Google Image Search

Much better!
But still not crystal clear.

[CC images, various sources]



Looking inside papers!

[ResNet-34, He et al., arXiv:1512.03385]

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. Thefirst isamulti-head self-attention mechanism, and thesecond is asimple, position-
wise fully connected feed-forward network. Weemploy a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: Thedecoder isalso composed of astack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over theoutput of theencoder stack. Similar to theencoder, weemploy residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i .

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

[Transformer, Vaswani et al., arXiv:1706.03762]

[Inception-ResNet v2,

https://ai.googleblog.com/2016/08/improving-inception-and-image.html]

[LSTM layer, image from Wikipedia, CC BY 4.0 Guillaume Chevalier]



Deep Learning from the Eye of an Accelerator Architect



Deep Learning from the Eye of an Accelerator Architect



Deep Learning from the Eye of an Accelerator Architect



Deep Learning from the Eye of an Accelerator Architect



Deep Learning from the Eye of an Accelerator Architect



Deep Learning from the Eye of an Accelerator Architect



Deep Learning from the Eye of an Accelerator Architect

Infinite compositions, but “basic ingredients” are all here!
Simple ideas are applicable to wide variety of models: DNNs,
RNNs, Transformers…



Deep Learning from the Eye of an Accelerator Architect

1. how to represent data
2. how to compute data transformations
3. where to store data and how to move them around



Deep Learning from the Eye of a Accelerator Architect

1. how to represent data
Method Data Range Parameter Range ImageNet Top1 Acc

Full-Precision Real numbers (FP32) Real numbers (FP32) 69.6

Linear Quantization Integers 0 to 255 Integers -128 to +127 69.6

PACT Integers 0 to 15 Integers -8 to +7 69.2

PACT Integers 0 to 7 Integers -4 to +3 68.1

PACT Integers 0 to 3 Integers -2 to +1 64.4

PACT Integers 0 to 3 -1 or +1 62.9

XNOR-Net -1 or +1 -1 or +1 51.2



Deep Learning from the Eye of a Accelerator Architect

1. how to represent data

2. how to compute data transformations

Method Data Range Parameter Range ImageNet Top1 Acc

Full-Precision Real numbers (FP32) Real numbers (FP32) 69.6

Linear Quantization Integers 0 to 255 Integers -128 to +127 69.6

PACT Integers 0 to 15 Integers -8 to +7 69.2

PACT Integers 0 to 7 Integers -4 to +3 68.1

PACT Integers 0 to 3 Integers -2 to +1 64.4

PACT Integers 0 to 3 -1 or +1 62.9

XNOR-Net -1 or +1 -1 or +1 51.2

i. dominated by simple arithmetic operations
ii. many-to-one →many possible compute orderings
iii. independent operations → can be done in parallel / hierarchically
iv. hardware complexity / speed /energy related to representation



Deep Learning from the Eye of a Accelerator Architect

1. how to represent data

2. how to compute data transformations

3. where to store data and how to move them around

Method Data Range Parameter Range ImageNet Top1 Acc

Full-Precision Real numbers (FP32) Real numbers (FP32) 69.6

Linear Quantization Integers 0 to 255 Integers -128 to +127 69.6

PACT Integers 0 to 15 Integers -8 to +7 69.2

PACT Integers 0 to 7 Integers -4 to +3 68.1

PACT Integers 0 to 3 Integers -2 to +1 64.4

PACT Integers 0 to 3 -1 or +1 62.9

XNOR-Net -1 or +1 -1 or +1 51.2

i. dominated by simple arithmetic operations
ii. many-to-one →many possible compute orderings
iii. independent operations → can be done in parallel / hierarchically
iv. hardware complexity / speed /energy related to representation

The main source of headaches for DL Accelerator Architects!



A Minimal Accelerator

ALUweight
input tensor
partial sum updated partial sum

Memory Read Multiply & 
Accumulate

Memory Write

COMPUTE:

MEMORY:

Off-Chip >10-9J

Von Neumann
Architecture

Non-Von Neumann… see the other talk!



21

Memory Access is the Bottleneck

ALU

Memory Read MAC* Memory Write

* multiply-and-accumulate

DRAM DRAM

• Example:
AlexNet [NIPS 2012] has 724M MACs

→ 2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses

DRAM access 100-1000x  less energy-
efficient than on-chip access!

Off-Chip >10-9J



22

Memory Access is the Bottleneck

ALU

Memory Read MAC* Memory Write

* multiply-and-accumulate

DRAM DRAM

• Example:

Off-Chip >10-9J



23

ALU

Memory Read MAC Memory Write

Extra levels of local memory hierarchy

MemDRAM DRAMMem

On-Chip ~10-11J
Off-Chip >10-9J

Memory Access is the Bottleneck



24

ALU

Memory Read MAC Memory Write

MemDRAM DRAMMem

Memory Access is the Bottleneck

voltage over-scaling region

50

55

60

65

70

75

80

85

90

95

100

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

A
c

c
u

ra
c

y
[%

]

B
it

 E
rr

o
r 

R
a

te

Vdd [V]

BER

Accuracy mVGG

Accuracy Yang

Accuracy Hubara

Reduce memory cost by error resilience



25

ALU

Memory Read MAC Memory Write

MemDRAM DRAMMem

Memory Access is the Bottleneck

voltage over-scaling region

50

55

60

65

70

75

80

85

90

95

100

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

A
c

c
u

ra
c

y
[%

]

B
it

 E
rr

o
r 

R
a

te

Vdd [V]

BER

Accuracy mVGG

Accuracy Yang

Accuracy Hubara

Reduce memory cost by error resilience Reduce transfer cost by data tiling

+



26

ALU

Memory Read MAC Memory Write

MemDRAM DRAMMem

Memory Access is the Bottleneck

voltage over-scaling region

50

55

60

65

70

75

80

85

90

95

100

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

A
c

c
u

ra
c

y
[%

]

B
it

 E
rr

o
r 

R
a

te

Vdd [V]

BER

Accuracy mVGG

Accuracy Yang

Accuracy Hubara

Reduce memory cost by error resilience Reduce transfer cost by data tiling

Reduced precision+ +



The Recipe for a Deep Learning Accelerator

1. Many Multiply-Accumulate (MAC) units to exploit parallelism

2. Flexible or Customized on-chip memory organization to keep as much data as possible 
on-chip, maximise its reuse…

3. Keep track of all external memory transfer overheads!



The Recipe for a Deep Learning Accelerator

1. Many Multiply-Accumulate (MAC) units to exploit parallelism

2. Flexible or Customized on-chip memory organization to keep as much data as possible 
on-chip, maximise its reuse…

3. Keep track of all external memory transfer overheads!

Custom architectures

Google Cloud TPU Intel/Movidius Myriad X

Tesla FSF Chip



How many processors? A lot!
CPU: 2/4 “big” cores + 4 “small” cores

GPU: 4/6 cores
Accelerators: Neural Processing Unit (NPU) + Image Signal Processor (ISP)
MCUs: Control + Always-On

A12 (iPhone XS) – 7nm
A12X (iPad Pro 2018)

9.89mm

8
.4

2
m

m

The Recipe for a Deep Learning Accelerator

[WikiChip]



The Queen of Deep Learning Accelerators: the GPU

[NVIDIA Turing]



The Queen of Deep Learning Accelerators: the GPU

NVIDIA GV100

5120 cores
80 multiprocessors

6MB L2 cache
per chip

128KB L1 cache
per multiprocessor

Tensor Cores



GPU Tensor Cores

TENSOR CORE
Mixed Precision Matrix Math  
4x4 matrices

D = AB + C

D =

FP16 or FP32 FP16 FP16 FP16 or FP32

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3

C0,0 C0,1 C0,2 C0,3

C1,0 C1,1 C1,2 C1,3

C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2 C3,3



There’s Plenty of Room at the Bottom

• The relationship between data representation, 

network topology, and perf/energy/memory is 

not yet fully explored (particularly for tiny 

devices)!

• The Von Neumann model could be suboptimal: 

is it possible to sidestep memory in doing

Multiply-Adds?

• Will future sophisticated AI algorithms show the 

same “good” properties of DNNS: regularity, 
parallelism, resilience?

[Lin et al., MCUNet: Tiny Deep Learning on IoT Devices]



www.unibo.it

Prof. Francesco Conti

DEI – Università di Bologna

f.conti@unibo.it


